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Abstract. For an observable which can be represented by a self-adjoint operator belonging 
to a rather restrictive class, it is shown that the problem of calculating the expectation value 
up to the nth order is equivalent to solving n commutator equations. In the first order the 
theory yields naturally the interchange theorem for any observable. For the calculation of 
the first-order corrections, the theory leads to a differential equation which is solved 
explicitly for a wide class of multiplication operators in the configuration space. 

1. introduction 

As in the usual perturbation procedure, it is assumed that the state vector and the 
energy eigenvalue for a stationary state of an isolated quantum system have Taylor 
expansions in powers of a parameter A in the Hamiltonian. It is found that the 
coefficients in the corresponding expansion of the expectation value of an observable 
take a particularly simple and nice form in terms of certain commutators. On careful 
examination, the class of observables to which the theory developed in this paper is 
applicable seems very restrictive. Nevertheless, the first-order theory is applicable to 
any observable and yields naturally the interchange theorem of Dalgarno (Dalgarno 
and Lewis 1955), something which is quite useful. This indicates that, with some further 
development and modification, the theory could find application in the calculation of 
the expectation value of any observable to any order. 

2. The perturbation expansions 

Operators are distinguished from other objects by putting a circumflex over symbols 
representing them. It is assumed that an isolated stationary quantum system has a 
Hamiltonian which can be written in the form go + AAl, where A can be regarded as a 
perturbation parameter, and that the eigenvectors and the eigenvalues of the Hamil- 
tonian have Taylor expansions in powers of A .  Let I+) be a particular eigenvector of 
f i O  + AG1 belonging to the eigenvalue E. Then 

m 

and 
m 

E = AiEi, 
i = O  
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where Gi and Ei satisfy 

( f i o  - Eof)I$o) = 0 
and 

( 2 . 3 ~ )  

Î  being the identity operator. 

tation value (A) of A has the expansion 
Let a be a self-adjoint operator representing some observable. Then the expec- 

(a)= 5 h"(d),, 
f l = O  

where 

(2.4) 

( 2 . 4 ~ )  

In arriving at the final expression in (2.6), apart from using (2.3u, b )  several re- 
arrangements of the various summands have been made. 

Next suppose that there exists an operator f i z  with the property that 

[fro, fizI= [fil, fill; (2.7) 

(2.8) 

then, by what has just been proved, 

(4, = ([fib fill>n--l = m 2 ,  fill)n-Z, 
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and, continuing in this way, one finally has 

(A)" =([ f in,  All),. (2.9) 
Thus, instead of solving the perturbation equations (2.3a, b) ,  if one can solve an equal 
number of commutator equations 

[A,, 011 = A  (2.10a) 

and 

[ g o ,  fi"l=[fi"-i,fiil  for all n > 1, (2.10b) 

then (A), is simply given by (2.9). 
The simplicity of expression (2.9) is remarkable. Admittedly it is much more 

difficult to solve commutator equations (2. loa ,  6)  than the perturbation equations 
(2.3~2, b ) ,  but the solutions of (2.3a, b )  give the expectation value of d for just one state, 
while the solutions of (2.10~2, 6 )  give the same for any state. 

It is interesting to investigate the conditions under which solutions of (2.10~2, b )  
exist. If 14") is an eigenvector of A0 belonging to eigenvalue E,, then 

(2.11) [ f i o ,  f i i ]  = [(A, - €,I), Of] 

(2.12a) 

which for i = 1 reduces to 

(4"1-44") = 0. (2.12b) 

Condition (2.12) is rather restrictive, and there might not be many observables with 
operators corresponding to them satisfying this requirement. However, if d is any 
self-adjoint operator and if ko has a complete set {/&)} of eigenvectors belonging to 
eigenvalues { E " } ,  then 

(2.13) 

clearly satisfies requirement (2.12b). In cases where the set {lq$,)} is known, a', in 
principle, is completely determined in terms of d and known operators. It is easy to see 
that the Hermitian part of fii, that is, $( fii + fi? 1, commutes with I?,, and that each f i i  is 
undetermined by an additive multiple of any operator which commutes with A,. This 
indeterminacy can be used to require that fii is anti-Hermitian as the essential part of fii 
is indeed so. 

3. Applications in the first order: the interchange theorem 

Suppqse ipo) is the nth eigenvector Id,,) of Ao. In order to calculate (A)1, we require 
(4" I[ U1, H1]I~,)Aonll, and all that is required, assuming 14") is non-degenerate, is the 
restriction of [U,, H1] to the one-dimensional subspace spanned by 14,). In this 
subspace 
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takes the simple form 

[fib, fi1114fl) = ~14fl)-(4fll~14fl)14fl), (3.2) 
which, of course, satisfies 

(4fll[fio, filIl4fl) = (4fllAI4fl) - (4,IAl4fl> = 0. 

(4nl0114n)= 0,  (3.4) 

(3.3) 

implies that In this one-dimensional subspace fil is anti-Hermitian, which for real 

and since 0 is real, fil in this subspace is also Hermitian. This explains why Killingbeck 
(1972), seeking Hermitian solutions of (3.2) in a version of the theory which started and 
ended at the first order, was able to obtain correct results. 

Since 

[ f i o ,  011 = [ f ib  - d, Vll, 

( f i o  - E , f )  01 l4J = A lfJfl) - (4fl Id 14fl)14fl ). 

(3.5) 
(3.4) reduces to 

(3.6) 

In other words, -fil14,,) is the first-order correction 14L(A)) to I&) if f i0  is perturbed 
by the hypothetical potential A, and remembering that 0, is anti-Hermitian, one gets 

(3.7a) <&1= (4% I 01fi1- fi l  01 l4fl) = (4fl I f i x  14 L (A,) + (4  L (A Ilk1 Mfl ). 

( 4 1  = (4L(fil)lA'14fl) + (4fl lA'l4L(fil)) 

But, since rL1 = /4k(fil)), one also gets 

= (4;  (fil)lAl4fl) + (4fl l .m (fid - (4fl lL4#")((4k (fil)l4fl) + (4fl 14: cfim 
= (4L(fil)lA14fl)+(4fll~14k(~*)) 
=(Ah,  (3.7) 

(3.8) 
which follows from the normalisation of the perturbed state vector (Sharma 1968). 
Thus (3.7) not only shows that A' and A have the same first-order term, but the 
interchange theorem is contained in it. Here we have an alternative, almost inad- 
vertent, derivation of this well-known theorem. It is probable that Killingbeck (1972) 
could not see the equivalence of his result to the interchange theorem because he was 
requiring his 0, to be Hermitian. 

where we have used 

(4 ;  (filIl4fl) + (4fll4k (fill) = 0 ,  

4. Explicit solution of (3.6) for a certain class of multiplicative operators for 
hydrogenic states in atoms 

In atomic problems which can be reduced to the hydrogenic form, one works in the 
configuration space, where 

4fl = R(r )@(B)@(4) .  (4.1) fi- 1 2  
0 - -2V - l / r ,  

Assuming A' to be a multiplicative operator having the form f(r), one looks for an 
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operator ol which one assumes to be a multiplicative operator. Then 

[Go, fil]qL, =-(@@/2)[(2/r)U;R +2U;R’+  UYR]. (4.2) 

Hence fil is the solution of the differential equation 

(2Ir)U;R +2U;R’+  UY = -2f(r)R(r) 

or 

U’i+2(R’/R + l / r ) U i  =-2f(r), 

(4.3) 

( 4 . 3 ~ )  

where, while treating fil as a multiplicative operator, which is just a function of r, we 
have dropped the circumflex over it. 

This differential equation has an integrating factor 

= exp[2 In(rR)] = (rR)’. (4.4) 

Hence 

r2R2U;  = c 1  - 2  f(s)s2R2(s) ds I,‘ 
and 

and, integrating again, 

Ui=cz+cl  v - 2  7 f(t) t2R2(t)dt .  IO‘S Rd”cs) I’ o s R ds (s) I’ o 

(4.5) 

(4.6) 

(4.7) 

Since the integral in the second term acting on R(r )  clearly gives a non-normalisable 
function, one must take c1 = 0, giving 

ds ’ 
0 s R (SI 0 

U 1 = c 2 - 2  f(t) t2R2(t)dt .  (4.8) 

One determines c2 by the requirement that U1 is anti-Hermitian in the one-dimensional 
subspace spanned by the real function &, that is 

Iom Ul(r)R2(r)r2 dr = 0, 

giving 

c2=(2/IOm R2(r)r2dr) Iom R 2 ( r ) r 2 d r [ ‘ 7 I  ds ’ f(t) t2R2(t)  dt. 
0 s2R (SI 0 

(4.9) 

(4.10) 

Killingbeck (1972), starting with simple forms of U1, evaluated the corresponding 
f(r), whereas the problem really is to find U1 for a given f(r). Killingbeck’s indirect 
method gave the solution for a few f(r); the method of this paper is completely general, 
and Killingbeck’s few solutions can easily be seen to be particular examples of the 
integral in (4.8). 
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5. Concluding remarks 

It has been seen that the theory developed in this paper, in spite of the rather rigid 
restriction on A, is useful for the determination of the expectation value of any 
observable, at least in the first order, where it is equivalent to the interchange theorem. 
Since the second-order term in the expansion of is the first-order term in the 
expansion of [ fil, f i l l ,  and fi, has already been obtained, it may seem at first sight that 
by repeating the kind of work done for the first-order case one can calculate (A), for 
any n. Unfortunately fil obtained in 8 4 is a local solution valid only in the one- 
dimensional subspace spanned by the particular eigenvector, and this solution cannot 
be assumed to hold globally. This point is illustrated by taking R ( r )  to be r' e-*r. For 

f ( r )  = 5 - (1 + 1)/r, (5.1) 

equation (4.8) yields (see also Killingbeck 1972), if we take c2 = 0 (from the point of 
view of a commutator an additive constant is inconsequent), 

U1 = r. (5.2) 

Now the radial part of -V2/2 for hydrogenic states with azimuthal quantum number I 
has the form 

1 d2 1 d 1(1+1) -+- 
2 dr2 r dr  2r2 ' 

-- 

Therefore 

1 d2 1 d 1(1+1) d 1  
2 dr2 r dr  2r [fro, O,] = [ -- -+T, r] = -z-;. 

(5.3) 

(5.4) 

The restrictions of -d/dr - l / r  and 5 -  (1 + l ) / r  to the one-dimensional subspace 
spanned by r' ever are identical, but globally they are very different operators. In order 
to extend the theory to higher orders, one needs not only the restriction of fil to the 
particular one-dimensional subspace, but also its form globally. Hence considerable 
further work is required before one can use this theory in higher-order calculations. 

Before concluding, it shouid be pointed out that Kauffman (1972) has found a 
relation between properties of A, fi and [A, I?] for closed operators A, kavine (1971, 
1 972) has studied applications of commutators to scattering theory, and Coulson (1965) 
has studied the use of commutators in solving Schrodinger's equation. 
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